本文概述
给定一个数组, 如何检查给定数组是否可表示为二叉堆?
例子:
Input: arr[] = {90, 15, 10, 7, 12, 2}
Output: True
The given array represents below tree
90
/ \
15 10
/ \ /
7 12 2
The tree follows max-heap property as every
node is greater than all of its descendants.
Input: arr[] = {9, 15, 10, 7, 12, 11}
Output: False
The given array represents below tree
9
/ \
15 10
/ \ /
7 12 11
The tree doesn't follows max-heap property 9 is
smaller than 15 and 10, and 10 is smaller than 11.
一种简单的解决方案:
首先要检查根是否大于其所有后代。然后检查根的子级。该解决方案的时间复杂度为O(n^2)。
一个高效的解决方案是仅将根与其子代(不是所有后代)进行比较, 如果根大于子代且所有节点均相同, 则树为最大堆(此结论基于>运算符的传递属性, 即, 如果x> y和y> z, 则x> z)。
假设索引从0开始, 则最后一个内部节点位于索引(n-2)/ 2。
以下是此解决方案的实现。
C++
// C program to check whether a given array
// represents a max-heap or not
#include <limits.h>
#include <stdio.h>
// Returns true if arr[i..n-1] represents a
// max-heap
bool isHeap( int arr[], int i, int n)
{
// If a leaf node
if (i >= (n - 2) / 2)
return true ;
// If an internal node and is
// greater than its children, // and same is recursively
// true for the children
if (arr[i] >= arr[2 * i + 1] &&
arr[i] >= arr[2 * i + 2]
&& isHeap(arr, 2 * i + 1, n)
&& isHeap(arr, 2 * i + 2, n))
return true ;
return false ;
}
// Driver program
int main()
{
int arr[] = { 90, 15, 10, 7, 12, 2, 7, 3 };
int n = sizeof (arr) / sizeof ( int ) - 1;
isHeap(arr, 0, n) ? printf ( "Yes" ) : printf ( "No" );
return 0;
}
Java
// Java program to check whether a given array
// represents a max-heap or not
class GFG
{
// Returns true if arr[i..n-1]
// represents a max-heap
static boolean isHeap( int arr[], int i, int n)
{
// If a leaf node
if (i >= (n - 2 ) / 2 )
{
return true ;
}
// If an internal node and
// is greater than its
// children, and same is
// recursively true for the
// children
if (arr[i] >= arr[ 2 * i + 1 ]
&& arr[i] >= arr[ 2 * i + 2 ]
&& isHeap(arr, 2 * i + 1 , n)
&& isHeap(arr, 2 * i + 2 , n))
{
return true ;
}
return false ;
}
// Driver program
public static void main(String[] args)
{
int arr[] = { 90 , 15 , 10 , 7 , 12 , 2 , 7 , 3 };
int n = arr.length - 1 ;
if (isHeap(arr, 0 , n)) {
System.out.println( "Yes" );
}
else {
System.out.println( "No" );
}
}
}
// This code contributed by 29AjayKumar
Python3
# Python3 program to check whether a
# given array represents a max-heap or not
# Returns true if arr[i..n-1]
# represents a max-heap
def isHeap(arr, i, n):
# If a leaf node
if i > = int ((n - 2 ) / 2 ):
return True
# If an internal node and is greater
# than its children, and same is
# recursively true for the children
if (arr[i] > = arr[ 2 * i + 1 ] and
arr[i] > = arr[ 2 * i + 2 ] and
isHeap(arr, 2 * i + 1 , n) and
isHeap(arr, 2 * i + 2 , n)):
return True
return False
# Driver Code
if __name__ = = '__main__' :
arr = [ 90 , 15 , 10 , 7 , 12 , 2 , 7 , 3 ]
n = len (arr) - 1
if isHeap(arr, 0 , n):
print ( "Yes" )
else :
print ( "No" )
# This code is contributed by PranchalK
C#
// C# program to check whether a given
// array represents a max-heap or not
using System;
class GFG
{
// Returns true if arr[i..n-1] represents a
// max-heap
static bool isHeap( int []arr, int i, int n)
{
// If a leaf node
if (i >= (n - 2) / 2)
{
return true ;
}
// If an internal node and is greater
// than its children, and same is
// recursively true for the children
if (arr[i] >= arr[2 * i + 1] &&
arr[i] >= arr[2 * i + 2] &&
isHeap(arr, 2 * i + 1, n) &&
isHeap(arr, 2 * i + 2, n))
{
return true ;
}
return false ;
}
// Driver Code
public static void Main(String[] args)
{
int []arr = {90, 15, 10, 7, 12, 2, 7, 3};
int n = arr.Length-1;
if (isHeap(arr, 0, n))
{
Console.Write( "Yes" );
}
else
{
Console.Write( "No" );
}
}
}
PHP
<?php
// PHP program to check whether a given
// array represents a max-heap or not
// Returns true if arr[i..n-1]
// represents a max-heap
function isHeap( $arr , $i , $n )
{
// If a leaf node
if ( $i >= ( $n - 2) / 2)
return true;
// If an internal node and is greater
// than its children, and same is
// recursively true for the children
if ( $arr [ $i ] >= $arr [2 * $i + 1] &&
$arr [ $i ] >= $arr [2 * $i + 2] &&
isHeap( $arr , 2 * $i + 1, $n ) &&
isHeap( $arr , 2 * $i + 2, $n ))
return true;
return false;
}
// Driver Code
$arr = array (90, 15, 10, 7, 12, 2, 7, 3);
$n = sizeof( $arr );
if (isHeap( $arr , 0, $n ))
echo "Yes" ;
else
echo "No" ;
// This code is contributed
// by Akanksha Rai
?>
输出如下:
Yes
该解决方案的时间复杂度为O(n)。该解决方案类似于二叉树的遍历遍历。
一个迭代解是遍历所有内部节点并检查id节点是否大于其子节点。
C++
// C program to check whether a given array
// represents a max-heap or not
#include <stdio.h>
#include <limits.h>
// Returns true if arr[i..n-1] represents a
// max-heap
bool isHeap( int arr[], int n)
{
// Start from root and go till the last internal
// node
for ( int i=0; i<=(n-2)/2; i++)
{
// If left child is greater, return false
if (arr[2*i +1] > arr[i])
return false ;
// If right child is greater, return false
if (2*i+2 < n && arr[2*i+2] > arr[i])
return false ;
}
return true ;
}
// Driver program
int main()
{
int arr[] = {90, 15, 10, 7, 12, 2, 7, 3};
int n = sizeof (arr) / sizeof ( int );
isHeap(arr, n)? printf ( "Yes" ): printf ( "No" );
return 0;
}
Java
// Java program to check whether a given array
// represents a max-heap or not
class GFG {
// Returns true if arr[i..n-1] represents a
// max-heap
static boolean isHeap( int arr[], int n) {
// Start from root and go till the last internal
// node
for ( int i = 0 ; i <= (n - 2 ) / 2 ; i++) {
// If left child is greater, return false
if (arr[ 2 * i + 1 ] > arr[i]) {
return false ;
}
// If right child is greater, return false
if ( 2 * i + 2 < n && arr[ 2 * i + 2 ] > arr[i]) {
return false ;
}
}
return true ;
}
// Driver program
public static void main(String[] args) {
int arr[] = { 90 , 15 , 10 , 7 , 12 , 2 , 7 , 3 };
int n = arr.length;
if (isHeap(arr, n)) {
System.out.println( "Yes" );
} else {
System.out.println( "No" );
}
}
}
// This code is contributed by 29AjayKumar
Python3
# Python3 program to check whether a
# given array represents a max-heap or not
# Returns true if arr[i..n-1]
# represents a max-heap
def isHeap(arr, n):
# Start from root and go till
# the last internal node
for i in range ( int ((n - 2 ) / 2 ) + 1 ):
# If left child is greater, # return false
if arr[ 2 * i + 1 ] > arr[i]:
return False
# If right child is greater, # return false
if ( 2 * i + 2 < n and
arr[ 2 * i + 2 ] > arr[i]):
return False
return True
# Driver Code
if __name__ = = '__main__' :
arr = [ 90 , 15 , 10 , 7 , 12 , 2 , 7 , 3 ]
n = len (arr)
if isHeap(arr, n):
print ( "Yes" )
else :
print ( "No" )
# This code is contributed by PranchalK
C#
// C# program to check whether a given array
// represents a max-heap or not
using System;
class GFG
{
// Returns true if arr[i..n-1]
// represents a max-heap
static bool isHeap( int []arr, int n)
{
// Start from root and go till
// the last internal node
for ( int i = 0; i <= (n - 2) / 2; i++)
{
// If left child is greater, // return false
if (arr[2 * i + 1] > arr[i])
{
return false ;
}
// If right child is greater, // return false
if (2 * i + 2 < n && arr[2 * i + 2] > arr[i])
{
return false ;
}
}
return true ;
}
// Driver Code
public static void Main()
{
int []arr = {90, 15, 10, 7, 12, 2, 7, 3};
int n = arr.Length;
if (isHeap(arr, n))
{
Console.Write( "Yes" );
}
else
{
Console.Write( "No" );
}
}
}
// This code is contributed
// by 29AjayKumar
PHP
<?php
// PHP program to check whether a
// given array represents a max-heap or not
// Returns true if arr[i..n-1]
// represents a max-heap
function isHeap( $arr , $i , $n )
{
// Start from root and go till
// the last internal node
for ( $i = 0; $i < (( $n - 2) / 2) + 1; $i ++)
{
// If left child is greater, // return false
if ( $arr [2 * $i + 1] > $arr [ $i ])
return False;
// If right child is greater, // return false
if (2 * $i + 2 < $n &&
$arr [2 * $i + 2] > $arr [ $i ])
return False;
return True;
}
}
// Driver Code
$arr = array (90, 15, 10, 7, 12, 2, 7, 3);
$n = sizeof( $arr );
if (isHeap( $arr , 0, $n ))
echo "Yes" ;
else
echo "No" ;
// This code is contributed by Princi Singh
?>
输出如下:
Yes
感谢Himanshu提出此解决方案。
以上就是检查数组是否可用表示为二叉堆的多个解决方法了。如果发现任何不正确的地方, 或者想分享有关上述主题的更多信息, 请发表评论。
来源:
https://www.srcmini02.com/68438.html