本文概述
给定文本和通配符模式, 请实现通配符模式匹配算法, 以查找通配符模式是否与文本匹配。匹配项应覆盖整个文本(而非部分文本)。
通配符模式可以包含字符”?”和” *”
‘?’–匹配任何单个字符
‘*’–匹配任何字符序列(包括空序列)
例如,
Text = "baaabab", Pattern = "*****ba*****ab", output : true
Pattern = "baaa?ab", output : true
Pattern = "ba*a?", output : true
Pattern = "a*ab", output : false
通配符模式中每次出现的”?”字符都可以用任何其他字符替换, 而每次出现” *”时都可以使用一系列字符, 以使通配符模式在替换后变得与输入字符串相同。
让我们考虑一下模式中的任何字符。
情况1:字符为” *”
这里出现两种情况
- 我们可以忽略” *”字符, 然后移至图案中的下一个字符。
- ” *”字符与”文本”中的一个或多个字符匹配。在这里, 我们将移至字符串中的下一个字符。
情况2:字符是”?”
我们可以忽略文本中的当前字符, 而移至图案和文本中的下一个字符。
情况3:字符不是通配符
如果Text中的当前字符与Pattern中的当前字符匹配, 我们将移至Pattern和Text中的下一个字符。如果它们不匹配, 则通配符模式和文本不匹配。
我们可以使用动态编程来解决此问题–
让
T [i] [j]
如果给定字符串中的前i个字符与pattern的前j个字符匹配, 则为true。
推荐:请在”
实践
首先, 在继续解决方案之前。
DP初始化:
// both text and pattern are null
T[0][0] = true;
// pattern is null
T[i][0] = false;
// text is null
T[0][j] = T[0][j - 1] if pattern[j – 1] is '*'
DP关系:
// If current characters match, result is same as
// result for lengths minus one. Characters match
// in two cases:
// a) If pattern character is '?' then it matches
// with any character of text.
// b) If current characters in both match
if ( pattern[j – 1] == ‘?’) ||
(pattern[j – 1] == text[i - 1])
T[i][j] = T[i-1][j-1]
// If we encounter ‘*’, two choices are possible-
// a) We ignore ‘*’ character and move to next
// character in the pattern, i.e., ‘*’
// indicates an empty sequence.
// b) '*' character matches with ith character in
// input
else if (pattern[j – 1] == ‘*’)
T[i][j] = T[i][j-1] || T[i-1][j]
else // if (pattern[j – 1] != text[i - 1])
T[i][j] = false
下面是上述动态编程方法的实现。
C ++
// C++ program to implement wildcard
// pattern matching algorithm
#include <bits/stdc++.h>
using namespace std;
// Function that matches input str with
// given wildcard pattern
bool strmatch( char str[], char pattern[], int n, int m)
{
// empty pattern can only match with
// empty string
if (m == 0)
return (n == 0);
// lookup table for storing results of
// subproblems
bool lookup[n + 1][m + 1];
// initailze lookup table to false
memset (lookup, false , sizeof (lookup));
// empty pattern can match with empty string
lookup[0][0] = true ;
// Only '*' can match with empty string
for ( int j = 1; j <= m; j++)
if (pattern[j - 1] == '*' )
lookup[0][j] = lookup[0][j - 1];
// fill the table in bottom-up fashion
for ( int i = 1; i <= n; i++) {
for ( int j = 1; j <= m; j++) {
// Two cases if we see a '*'
// a) We ignore ‘*’ character and move
// to next character in the pattern, // i.e., ‘*’ indicates an empty sequence.
// b) '*' character matches with ith
// character in input
if (pattern[j - 1] == '*' )
lookup[i][j]
= lookup[i][j - 1] || lookup[i - 1][j];
// Current characters are considered as
// matching in two cases
// (a) current character of pattern is '?'
// (b) characters actually match
else if (pattern[j - 1] == '?'
|| str[i - 1] == pattern[j - 1])
lookup[i][j] = lookup[i - 1][j - 1];
// If characters don't match
else
lookup[i][j] = false ;
}
}
return lookup[n][m];
}
int main()
{
char str[] = "baaabab" ;
char pattern[] = "*****ba*****ab" ;
// char pattern[] = "ba*****ab";
// char pattern[] = "ba*ab";
// char pattern[] = "a*ab";
// char pattern[] = "a*****ab";
// char pattern[] = "*a*****ab";
// char pattern[] = "ba*ab****";
// char pattern[] = "****";
// char pattern[] = "*";
// char pattern[] = "aa?ab";
// char pattern[] = "b*b";
// char pattern[] = "a*a";
// char pattern[] = "baaabab";
// char pattern[] = "?baaabab";
// char pattern[] = "*baaaba*";
if (strmatch(str, pattern, strlen (str), strlen (pattern)))
cout << "Yes" << endl;
else
cout << "No" << endl;
return 0;
}
Java
// Java program to implement wildcard
// pattern matching algorithm
import java.util.Arrays;
public class GFG {
// Function that matches input str with
// given wildcard pattern
static boolean strmatch(String str, String pattern, int n, int m)
{
// empty pattern can only match with
// empty string
if (m == 0 )
return (n == 0 );
// lookup table for storing results of
// subproblems
boolean [][] lookup = new boolean [n + 1 ][m + 1 ];
// initailze lookup table to false
for ( int i = 0 ; i < n + 1 ; i++)
Arrays.fill(lookup[i], false );
// empty pattern can match with empty string
lookup[ 0 ][ 0 ] = true ;
// Only '*' can match with empty string
for ( int j = 1 ; j <= m; j++)
if (pattern.charAt(j - 1 ) == '*' )
lookup[ 0 ][j] = lookup[ 0 ][j - 1 ];
// fill the table in bottom-up fashion
for ( int i = 1 ; i <= n; i++)
{
for ( int j = 1 ; j <= m; j++)
{
// Two cases if we see a '*'
// a) We ignore '*'' character and move
// to next character in the pattern, // i.e., '*' indicates an empty
// sequence.
// b) '*' character matches with ith
// character in input
if (pattern.charAt(j - 1 ) == '*' )
lookup[i][j] = lookup[i][j - 1 ]
|| lookup[i - 1 ][j];
// Current characters are considered as
// matching in two cases
// (a) current character of pattern is '?'
// (b) characters actually match
else if (pattern.charAt(j - 1 ) == '?'
|| str.charAt(i - 1 )
== pattern.charAt(j - 1 ))
lookup[i][j] = lookup[i - 1 ][j - 1 ];
// If characters don't match
else
lookup[i][j] = false ;
}
}
return lookup[n][m];
}
// Driver code
public static void main(String args[])
{
String str = "baaabab" ;
String pattern = "*****ba*****ab" ;
// String pattern = "ba*****ab";
// String pattern = "ba*ab";
// String pattern = "a*ab";
// String pattern = "a*****ab";
// String pattern = "*a*****ab";
// String pattern = "ba*ab****";
// String pattern = "****";
// String pattern = "*";
// String pattern = "aa?ab";
// String pattern = "b*b";
// String pattern = "a*a";
// String pattern = "baaabab";
// String pattern = "?baaabab";
// String pattern = "*baaaba*";
if (strmatch(str, pattern, str.length(), pattern.length()))
System.out.println( "Yes" );
else
System.out.println( "No" );
}
}
// This code is contributed by Sumit Ghosh
Python3
# Python program to implement wildcard
# pattern matching algorithm
# Function that matches input strr with
# given wildcard pattern
def strrmatch(strr, pattern, n, m):
# empty pattern can only match with
# empty strring
if (m = = 0 ):
return (n = = 0 )
# lookup table for storing results of
# subproblems
lookup = [[ False for i in range (m + 1 )] for j in range (n + 1 )]
# empty pattern can match with empty strring
lookup[ 0 ][ 0 ] = True
# Only '*' can match with empty strring
for j in range ( 1 , m + 1 ):
if (pattern[j - 1 ] = = '*' ):
lookup[ 0 ][j] = lookup[ 0 ][j - 1 ]
# fill the table in bottom-up fashion
for i in range ( 1 , n + 1 ):
for j in range ( 1 , m + 1 ):
# Two cases if we see a '*'
# a) We ignore ‘*’ character and move
# to next character in the pattern, # i.e., ‘*’ indicates an empty sequence.
# b) '*' character matches with ith
# character in input
if (pattern[j - 1 ] = = '*' ):
lookup[i][j] = lookup[i][j - 1 ] or lookup[i - 1 ][j]
# Current characters are considered as
# matching in two cases
# (a) current character of pattern is '?'
# (b) characters actually match
elif (pattern[j - 1 ] = = '?' or strr[i - 1 ] = = pattern[j - 1 ]):
lookup[i][j] = lookup[i - 1 ][j - 1 ]
# If characters don't match
else :
lookup[i][j] = False
return lookup[n][m]
# Driver code
strr = "baaabab"
pattern = "*****ba*****ab"
# char pattern[] = "ba*****ab"
# char pattern[] = "ba*ab"
# char pattern[] = "a*ab"
# char pattern[] = "a*****ab"
# char pattern[] = "*a*****ab"
# char pattern[] = "ba*ab****"
# char pattern[] = "****"
# char pattern[] = "*"
# char pattern[] = "aa?ab"
# char pattern[] = "b*b"
# char pattern[] = "a*a"
# char pattern[] = "baaabab"
# char pattern[] = "?baaabab"
# char pattern[] = "*baaaba*"
if (strrmatch(strr, pattern, len (strr), len (pattern))):
print ( "Yes" )
else :
print ( "No" )
# This code is contributed by shubhamsingh10
C#
// C# program to implement wildcard
// pattern matching algorithm
using System;
class GFG {
// Function that matches input str with
// given wildcard pattern
static Boolean strmatch(String str, String pattern, int n, int m)
{
// empty pattern can only match with
// empty string
if (m == 0)
return (n == 0);
// lookup table for storing results of
// subproblems
Boolean[, ] lookup = new Boolean[n + 1, m + 1];
// initailze lookup table to false
for ( int i = 0; i < n + 1; i++)
for ( int j = 0; j < m + 1; j++)
lookup[i, j] = false ;
// empty pattern can match with
// empty string
lookup[0, 0] = true ;
// Only '*' can match with empty string
for ( int j = 1; j <= m; j++)
if (pattern[j - 1] == '*' )
lookup[0, j] = lookup[0, j - 1];
// fill the table in bottom-up fashion
for ( int i = 1; i <= n; i++) {
for ( int j = 1; j <= m; j++) {
// Two cases if we see a '*'
// a) We ignore '*'' character and move
// to next character in the pattern, // i.e., '*' indicates an empty
// sequence.
// b) '*' character matches with ith
// character in input
if (pattern[j - 1] == '*' )
lookup[i, j] = lookup[i, j - 1]
|| lookup[i - 1, j];
// Current characters are considered as
// matching in two cases
// (a) current character of pattern is '?'
// (b) characters actually match
else if (pattern[j - 1] == '?'
|| str[i - 1] == pattern[j - 1])
lookup[i, j] = lookup[i - 1, j - 1];
// If characters don't match
else
lookup[i, j] = false ;
}
}
return lookup[n, m];
}
// Driver Code
public static void Main(String[] args)
{
String str = "baaabab" ;
String pattern = "*****ba*****ab" ;
// String pattern = "ba*****ab";
// String pattern = "ba*ab";
// String pattern = "a*ab";
// String pattern = "a*****ab";
// String pattern = "*a*****ab";
// String pattern = "ba*ab****";
// String pattern = "****";
// String pattern = "*";
// String pattern = "aa?ab";
// String pattern = "b*b";
// String pattern = "a*a";
// String pattern = "baaabab";
// String pattern = "?baaabab";
// String pattern = "*baaaba*";
if (strmatch(str, pattern, str.Length, pattern.Length))
Console.WriteLine( "Yes" );
else
Console.WriteLine( "No" );
}
}
// This code is contributed by Rajput-Ji
输出如下
Yes
时间复杂度:
O(米×n)
辅助空间:
O(米×n)
DP备忘录解决方案:-
C ++
// C++ program to implement wildcard
// pattern matching algorithm
#include <bits/stdc++.h>
using namespace std;
// Function that matches input str with
// given wildcard pattern
vector<vector< int > > dp;
int finding(string& s, string& p, int n, int m)
{
// return 1 if n and m are negative
if (n < 0 && m < 0)
return 1;
// return 0 if m is negative
if (m < 0)
return 0;
// return n if n is negative
if (n < 0)
{
// while m is positve
while (m >= 0)
{
if (p[m] != '*' )
return 0;
m--;
}
return 1;
}
// if dp state is not visited
if (dp[n][m] == -1)
{
if (p[m] == '*' )
{
return dp[n][m] = finding(s, p, n - 1, m)
|| finding(s, p, n, m - 1);
}
else
{
if (p[m] != s[n] && p[m] != '?' )
return dp[n][m] = 0;
else
return dp[n][m]
= finding(s, p, n - 1, m - 1);
}
}
// return dp[n][m] if dp state is previsited
return dp[n][m];
}
bool isMatch(string s, string p)
{
dp.clear();
// resize the dp array
dp.resize(s.size() + 1, vector< int >(p.size() + 1, -1));
return dp[s.size()][p.size()]
= finding(s, p, s.size() - 1, p.size() - 1);
}
// Driver code
int main()
{
string str = "baaabab" ;
string pattern = "*****ba*****ab" ;
// char pattern[] = "ba*****ab";
// char pattern[] = "ba*ab";
// char pattern[] = "a*ab";
// char pattern[] = "a*****ab";
// char pattern[] = "*a*****ab";
// char pattern[] = "ba*ab****";
// char pattern[] = "****";
// char pattern[] = "*";
// char pattern[] = "aa?ab";
// char pattern[] = "b*b";
// char pattern[] = "a*a";
// char pattern[] = "baaabab";
// char pattern[] = "?baaabab";
// char pattern[] = "*baaaba*";
if (isMatch(str, pattern))
cout << "Yes" << endl;
else
cout << "No" << endl;
return 0;
}
输出如下
Yes
时间复杂度:O(m x n)。
辅助空间:O(m×n)。
进一步改进:
通过仅使用最后一行的结果, 可以提高空间的复杂性。
另一个改进是, 你将模式中的连续” *”合并为单个” *”, 因为它们含义相同。例如, 对于模式” ***** ba ***** ab”, 如果我们合并连续的星星, 则结果字符串将为” * ba * ab”。因此, m的值从14减少到6。
如果发现任何不正确的地方, 或者想分享有关上述主题的更多信息, 请发表评论。